
356 

The ‘starting plume’ in neutral surroundings 

By J. S. TURNER 
Radiophysics Laboratory, C.S .I .R.O., Sydney, Australia 

(Received 20 January 1962) 

The advancing front of a buoyant plume which is being established in uniform 
surroundings has some properties in common with the plume, while in other 
respects it behaves more like a ‘thermal’ released from rest. The solutions for 
these two cases cannot be matched directly, since the dependence of velocity 
on height is different. It is shown here that a similarity solution, which is con- 
sistent with the equations describing both parts of the flow, can be obtained once 
it is recognized that the velocity of the front may be less than that of the steady 
plume. The cap moves with a constant fraction of the plume velocity at  the same 
level, and the total buoyancy in the cap is increasing, so a modification of the 
simple relations for thermals is required. 

This prediction is verified experimentally, and numerical values for the ratio 
of the velocities and the rate of increase of the cap radius with height determined. 
The extreme front of plume cap advances at  about 0.6 times the mean velocity 
on the axis of a steady plume, and it spreads at just over half the angle of a ther- 
mal. This implies a smaller rate of entrainment and therefore a smaller rate of 
dilution per unit height compared with a thermal, especially since about half of 
the fluid mixed into the cap comes from the plume below. The model allows one 
to estimate the time necessary for convection from a known steady source 
on the ground to lead to the formation of a cloud. 

1. Introduction 
In  the study of convection in the atmosphere, and the mixing processes in 

and below cumulus clouds, two main types of theoretical models have been pro- 
posed. The first of these is the plume or jet model, in which the cloud is supposed 
to behave like a steady turbulent plume which entrains the environmental air 
round its sides. The second group consists of the bubble theories, which trace the 
development in time of elements of buoyant fluid; these can be thought of 
either as comprising the whole of the cloud, or as smaller elements within it 
(‘thermals ’) comparable in size with individual cumulus towers. 

Each of these models has certain obvious disadvantages. The plume theories 
disregard any development in time of the depth or width, and they neglect 
any possible mixing at  the top of the cloud. There is reason to believe that they 
can thereby seriously underestimate the mixing (see, for example, the recent 
survey by Squires 1962). The bubble theories, on the other hand, ignore the 
possibility of a relatively steady, continuing source of heat and moisture below 
cloudbase; a continuous renewal of cloud by condensation seems to be implied 
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by the existence of the sharp flat bases which are observed. In  fact it would seem 
that an improved model of cloud growth should include features from both the 
earlier types of theory: the supply of buoyancy from below, entrainment at the 
sides and mixing a t  the top must all be considered. 

The necessity for such a model becomes clearer on those occasions when the 
plume of hot air below the cloud is made visible because it contains smoke. 
Figure 1, plate 1, is a photograph of a cloud which has formed on top of a smoke 
plume produced by burning grass (similar observations have been reported over 
fires in stubble or sugar cane). It is suggested in this paper that even in cases 
where the warm column is not visible below the condensation level, the continu- 
ing supply of buoyancy can have a significant effect on the motion in small 
cumulus clouds. 

The production of extra buoyancy by the release of latent heat will of course 
also have to be taken into account in a full solution of the problem, though this is 
outside the scope of the present discussion. Several papers have appeared which 
show the limitations of the plume model in this case; for example Morton (1957) 
has suggested a mechanism whereby large condensing clouds can become inde- 
pendent of the plume from which they formed. Recently, Mason & Emig (1961) 
have made a theoretical study of cloudy convection in which they use some ideas 
from plume theory (uniform properties in the horizontal plane) but formulate 
the equations of motion in terms of the parcel model. The physical basis of the 
implied assumptions is not stated specifically, but their model is more complicated 
and less well defined than the one which will be discussed here. 

As a first step towards the understanding of this complex motion, we set 
ourselves here a simpler problem. This is to investigate theoretically and experi- 
mentally the motion near the advancing front of a vertical plume, which is being 
established in neutral surroundings by suddenly emitting buoyant fluid at  a 
constant rate from a point source. This model will therefore be strictly applicable 
to dry convection, before a cloud has formed, but it will probably also be relevant 
for small clouds in which condensation effects never become dominant. The 
flow obtained when such a plume has been in existence for a short time is pictured 
in figure 2, plate 2; this shows two photographs taken 1 sec apart of a plume 
of dyed salt solution moving downwards through fresh water. Note that the 
shape of the starting plume remains the same while the size is increasing. 

It will be shown that a similarity solution may be used to describe this motion. 
In  order to link the derivation more closely to previous models it will be assumed 
that the flow some distance behind the front is the same as that existing in a steady 
plume, while the motion in the cap or front itself is more like that in a ‘thermal’ 
released from rest. The qualitative reason for this idea is obvious from figure 3, 
plate 3, in which the supply of dye in a starting plume has been momentarily 
interrupted to show the nearly spherical ‘front’ and the steady plume behind. 
At first sight, any similarity theory based on this hypothesis would seem to be 
out of the question, since the functional dependence of velocity on distance is 
different for a plume and a thermal of constant total buoyancy. It must be 
recognized, however, that the velocity of the cap need not be the same as that of 
the plume fluid immediately behind it, so that there can be an increase of total 
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buoyancy with time near the advancing front. This will change the character 
of the motion, and makes the two parts of the solution reconcilable, as shown 
below. 

2. The steady plume 
The well-known results for a steady plume in neutral surroundings will first 

be summarized. The approach of Morton, Taylor & Turner (1956)) which is 
equivalent in neutral surroundings to the dimensional argument first used by 
Schmidt (1941)) will be followed. Though the solution of Priestley & Ball (1955) 
may bemore realistic near the origin (sinceit assumes a finite velocity there instead 
of the infinite value arising from the similarity solution), the various forms 
approach one another at  greater heights, and it seems preferable to use the 
simplest here. 

Let us make the common assumption that the profiles of mean velocity and 
density differences are Gaussian, with the same length scale b and maximum 
values u ( z )  and A(z), which are functions of the height z above a virtual origin. 
Then 

u ( z ,  r )  = u(z) e-r2/bZ, 

g(po -p)/po = A(z, r )  = A(z) e-r2/b2, 

where po and p are the densities outside and inside the plume. The entrainment 
principle used by Morton et al. is that the inflow velocity at  any height is 
proportional to the velocity scale a t  that height, so the rate of entrainment of 
volume per unit height is 27rbau(z), a being defined as the 'entrainment constant '. 
The equations of conservation of volume, momentum and density deficiency 
integrated over the plume section may be written 

d(b2u)/dz = Zbau, 

d(b2U2)/dz = 2b2A, 

d(b2uA)/dz = 0. 

The third of these equations can be integrated immediately to give 

Q = b2UA = (2/7r) x (flux of A), (3) 

which is a constant. The solutions for b, u and A may be found in terms of Q and 
:: in the forms 

b = %OX, u = $a-l(gaQ)*~-Q, A = g&a-'(gc~Q)-Q~-%. (4) 

3. The vortex ring theory of thermals 
In  recent years, much detailed information has been obtained about the 

characteristics of thermals of constant total buoyancy in neutral surroundings. 
The laboratory experiments of Woodward (1959), for example, have shown that a 
thermal consists of a region of turbulent buoyant fluid whose radius is increasing 
linearly with distance as it mixes with its surroundings. A circulating motion is 
produced by the buoyancy, with a region of greater than mean velocity up the 
centre and a downward moving region at the edges. Woodward was able to plot 
out the flow pattern and show that the motion remains similar at  all heights, and 
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also to demonstrate that the addition of outside fluid takes place partly by mixing 
over the front of the thermal and partly by the drawing up of fluid from behind. 
In this sense it can be said that a thermal leaves no wake (of buoyant or turbulent 
fluid) behind it. 

The motion described above is rather like that in a vortex ring, and in fact 
Turner (1  957) has shown that the thermal may be regarded as a special case of a 
buoyant vortex ring. Levine (1959) too has based his theory of thermals on a 
spherical vortex, though he restricts the discussion to an element of fixed size, 
implying an equal turbulent transfer into and out of the element. We shall be 
concerned in this paper with a vortex which is growing by the turbulent entrain- 
ment of external fluid in an atmosphere at rest. 

Provided the buoyancy remains constant, it  follows from dimensional argu- 
ments that the dependence of velocity on the distance, say zc, which the centre 
of the thermal has travelled is v, cc x ; l  both for a vortex ring and a thermal, 
and this is very different from the relation (4) for a plume. The spread in radius 
is linear with height, and the general vortex-ring theory has shown how the angle 
of spread can depend both on the buoyancy and the initial momentum given to 
the element, instead of being determined uniquely by the buoyancy as it is for a 
thermal. The more general theory must be used when it is desired to introduce 
assumptions which allow the buoyancy to change with time. 

Several of the equations developed previously will hold unchanged in the 
present case. They will be repeated here for convenience of reference, but for 
details see Turner (1957). The momentum P of all the fluid moving with the 

(5) 
ring or thermal is given by 

where K is the circulation, p’ is the mean density and R is the ‘mean radius’ 
as defined by Lamb (1932). If it  is further assumed that the distribution of vor- 
ticity in the cap remains similar a t  all heights, the velocity of the centre of the cap 

(6) 
may be written as 

where c is a constant, which is not necessarily the same as that for a thermal 
but should be not too different from it. It is convenient for the present purpose 
to eliminate K from (5) and (6) to give 

P = rp’KR2, 

dz,/dt = V ,  = cK/R, 

P = (rp‘/C) R3v,. (5a)  

For a known total buoyancy 3’ = g V(p, - p’)/po (where V is the volume of buoyant 
fluid, po and p‘ are the densities outside and inside the thermal and g is the acceler- 
ation due to gravity), the time rate of change of P may be determined using the 
momentum equation. dPldt = pop.  

As usual we shall neglect all density differences in the inertia terms. 

( 7 )  

4. The front of a starting plume 
A very small addition to the ideas described above leads to a possible picture 

of the front of a ‘starting plume’. Suppose that the cap advances through 
stationary fluid and mixes with the surroundings there, but that the properties 
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of the region behind it are given by the solution (4). Thus the fluid drawn up into 
the advancing vortex ring will now come from the plume instead of the environ- 
ment, and will add extra buoyancy and momentum to it. The buoyancy distribu- 
tion will therefore be different from that in neutral surroundings, since plume 
fluid will be fed through the centre directly to the front of the cap. It is also to be 
expected that the mean velocity pattern could be modified somewhat from that 
given by Woodward, but it will still have the same characteristics of a circulating 
motion with a high velocity up the centre. 

It remains to put this idea into quantitative form. In  the previous application, 
it was possible to assume that the buoyancy F was constant, and that P changed 
through the action of buoyancy alone (equation (7)). In  the present case both 
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FIGURE 4. The vertical velocity profile relative to the fluid a t  rest, for potential flow around 
a moving sphere, at  the level of its top or bottom (full line). This is compared with points 
calculated for a Gaussian profile having the same maximum and a length scale equal to the 
‘mean radius’ R of a spherical vortex. ~ , Potential flow; 0, Gaussian profile. 

F and P will be increased by the flux of plume fluid into the rear of the cap. In  
order to evaluate fluxes relative to the moving cap, we must first decide how to 
specify the velocity profile across it. 

Since the cap merges gradually with the plume behind it, the exact form to be 
taken for the cap is somewhat arbitrary. We could assume that it resembles a 
thermal with its slightly flattened shape, but in the absence of a definite reason 
for doing otherwise it is simplest for our purpose to adopt the model of the spheri- 
cal vortex proposed by Levine (1959), for which quantitative results are known. 
Outside the vorticity containing region, the motion is like that past a solid sphere 
of the same radius as the vortex (Lamb 1932), so using standard results for poten- 
tial flow about a sphere one can obtain the vertical velocity profile along a hori- 
zontal line through the top (or bottom) of the spherical vortex. This is drawn 
in figure 4, where it is compared with several points calculated for the Gaussian 
profile having the same maximum and a length scale equal to the ‘mean radius’, 
R, of the vortex, i.e. it is compared with v(x) e-T2/R2 where v(z) is the velocity of 
the sphere and R2 = +a2, a being the radius of the sphere. The agreement is 
surprisingly good except for the absence in the Gaussian profile of a downward 
moving region at  large distances. 
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This result is the basis for the assumption which will now be made: that the 
junction between the cap and the plume occurs at  the bottom of the spherical 
vortex and the velocity profile across the cap at this level remains Gaussian with 
a length scale equal to R and a velocity scale equal to the velocity of advance of 
the cap, even when the vortex is growing and mixing with its surroundings. The 
velocity scale used will be that appropriate to the base of the cap, say v, at 
height zb. For an expanding spherical cap, this is related to the velocity of the 

Origin 

FIGURE 5. Diagram of the front of a starting plume, showing the relation 
between the various quantities referred to in $4. 

centre v, by v = v,.( 1 - a‘), where a’ = a/z, is defined as the ‘half angle of spread ’ 
of the cap. The relation between the various heights and lengths used in this 
section is shown diagrammatically in figure 5. It seems fairly clear that R and 
the length scale for the plume b will not be very different, although these will be 
kept distinct in the development of the theory. 

With this assumption the flux of buoyancy over a surface moving with the 
base of the cap may be calculated by integrating over Gaussian profiles. The time 
rate of increase of buoyancy in the cap is given by 

dF/dt  = inQ(1- ( /~v /u ) } ,  (8) 

where F and Q have been defined, and 
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The maximum velocities u ( z )  and ~ ( x )  are evaluated at  the same height z = z b  

in the plume and the cap. 
The momentum equation corresponding to (7) must now contain terms repre- 

senting the increase of momentum due to buoyancy and also the flux of momen- 
tum from the plume. For Gaussian profiles the flux term can be evaluated directly 
and we find 

(10) dP/dt  = PO F + po+nb2u(u - BV). 
The final equation necessary to determine P,  R and xb as functions of time 

may be written down if the relation between u and v is specified. It has already 
been implied that ZI must be constant fraction of u at the same height, and that 
/3 must be constant. This is in fact the only way the shape and size of the cap 
relative to the plume just below it can remain similar a t  all heights, and such a 
similarity assumption could have been taken as our starting-point. It has been 
more convenient to consider the two parts of the flow separately first, but we 
must now check that all the equations obtained above are consistent with this 
similarity condition. 

Thus put v(z) = C l U ( Z ) ,  (11) 

where u ( z )  is given by (4) and c1 is a constant (which later will be determined by 
experiment). Equation (8) may be integrated to  give 

F = +n&(1-/3~1)t .  (12) 

In  this, as in the earlier equations (8) and (10 )  describing the motion of the cap, 
t is the time which the base of the cap has taken to travel from the virtual origin 
to the height zb .  Integrating the equation for the velocity v(x)  obtained from (4) 
and (11)  we obtain 

( 1 3 )  t = $zac,l(%a&)-' zbQ. 

The relation (13) may now be used with (4) to evaluate the second term of (10) 
and to put it into the form 

using (12) .  Note that if c1 = Q, (14) implies that the two terms on the right-hand 
side contribute equally to the increase of momentum of the cap. 

This last equation can now be integrated to give 

P/po = +nQ (c1+ +) (1  - &) t2. (14a) 

(15) 

D3 = &[(cl++) (1- /3~~)~(l-a')] /a~! .  (16) 

On substituting for t in terms of zb using (13), and comparing with (5a) one obtains 
finally 

where D is a geometrical constant given by 

R = SUDZ, = Db, 

The factor ( 1  - a') arises because (5a) contains the velocity of the centre of the 
spherical cap. Thus a solution has been obtained which is consistent both with 
the plume and the vortex ring equations, and which relates the constants 
describing the behaviour of both parts of the flow. Note that since D and /3 
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are both functions of Rlb, a is a known constant for the plume (found by Morton 
et al. 1956 to be about 0.09) and a’ may be put in terms of R/b and a, equation (16) 
shows that the behaviour of the cap may be specified by two extra constants, 
and the third obtained from these. Experimentally the easiest to measure 
are cl, the ratio of the velocity of the base of the cap to the velocity in the 
plume at  the same level, and R/b (or equivalently and more conveniently, the 
angle of spread a’ of the visible edge of the cap), and these measurements are 
reported in Q 5 .  

0 8  r 
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c( 1 -a’) 

FIGURE 6. The relation between the constants c(1-a‘)  and c1 at the front of a starting 
plume, for several values of R/b. R is the ‘mean radius’ of the cap and b is the length scale 
of the plume at  the level of the base of the cap. Equation (16) has been used with a = 0.09. 

The above solution has already put certain limits on the values of the constants. 
It has been stated that c is likely to be not too different from its value in a thermal 
( x  0.15) and that R and b should be comparable, so that the range of likely 
values of c1 is restricted. This is shown in figure 6, where the relation between 
c1 and c( 1 -a‘) is plotted for several values of R/b. The visible radius a will be of 
course greater than R ;  the factor is about (5/2)4 = 1.6 for a spherical vortex 
and for Woodward’s thermal of constant buoyancy. 

It should also be remarked that, although the change of vorticity due to the 
action of buoyancy has not been considered specifically, the equations obtained 
here can be shown to be dimensionally consistent with the vorticity relations. 
The detailed discussion from this point of view would only introduce further 
geometrical constants which could be related to those used above. 

5. Experimental results 
Laboratory experiments have been carried out in order to measure directly the 

velocity of the cap comparedwith that of the plume behind, and the angleof spread 
of the cap. For convenience, the actual quantities obtainedhave been the velocity 
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of the extreme front of the cap, and the angle of spread of the visible edge; 
these can be compared with the theory by reducing them to the values appro- 
priate to the base of the cap and the ‘mean radius’. We note that the edge of the 
cap is sharp, as it is in a thermal, and there are no difficulties in defining mean 
positions (as there is in a plume, because it is waving about). 

The plume fluid consisted of salt solution, which was led from a roof tank to a 
downward pointing orifice held just below the surface of a large tank of fresh 
water. The plume was started suddenly by opening a tap near the orifice (so 
that heavy fluid immediately flowed out rather than being preceded by a jet 
of fresh water). This front was made visible with dye while the plume fluid 
behind was colourless (the photographs shown in figures 2 and 3, plates 2 and 3, 
in which the supply of dye was continued, were taken for illustration only). 
The tap setting was left unchanged, and when the front was well clear of the 
orifice, another pulse of colour was injected into the plume so that the motion of 
the steady flow could be followed. The whole operation was recorded on film. 

The half angle of spread a‘ of the edge of the cap was measured from the film; 
note that this is defined as the radius at any height divided by that height (rather 
than by the distance to the front, as it has been usually for thermals). The 
mean value of 18 runs with a variety of flow rates was 0.18 5 0-03; if the pattern 
of circulation in the cap is similar to that in a thermal or spherical vortex (if 
in particular the ratio of ‘mean radius’ R to the visible radius a is assumed to be 
the same) this result implies that R / z ,  = 0.11. This should be compared with the 
‘half angle of spread’ for a plume, b/z, = $a = 0.11; comparing R and b at the 
same height we see that R / b  z 1.2. It will later be shown (4 6) that the constant 
c for the cap turns out to be close to that for a thermal released from rest, so there 
is no reason to doubt that the above assumption about the pattern of circulation 
is a fairly good one. 

The half angle of spread of the visible edge may also be compared with that of 
a thermal, which is about 0.3 if the heights to the centre rather than the top are 
used. Thus the advancing front of a starting plume spreads at a considerably 
smaller angle than an unmaintained thermal released from rest. 

It was intended that the velocity of the steady plume, as well as that of the 
front, should be measured from the films, but it was difficult to follow on 16 mm. 
film the successive positions of a given patch of dye as it diffused through the 
centre of the turbulent plume. Instead, the measurement was made by following 
the motion visually and timing with a stop watch between fixed marks. This was 
done first for the front, and then for a filament of dye in the steady flow behind, 
which latter gave a measure of a mean particle velocity up the centre of the 
plume. For this purpose it does not matter that the velocity is decreasing over 
the path chosen, since we are interested primarily in obtaining the ratio between 
the two velocities, and we have found that the functional dependence on distance 
is similar. 

By varying the density and rate of output of salt, the velocity was changed by 
a factor of 3, implying a rate of output of density difference changing by a factor 
of 30. The mean ratio of front velocity to particle velocity for 39 runs was 
0.61 k 0.05. There is some uncertainty in the calculation of the velocity of the 
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‘centre’ (or base) of the cap from this, since the depth to be assigned to a region 
which merges with the plume below is not unambiguous. The main numerical 
uncertainties in the application of our theoretical model will arise from this 
cause. If we assume, however, that the region is spherical, then the velocity of 
the top of the sphere is (1  +a’) times the velocity of the centre, and the velocity 
in the plume changes by a factor of (1 + a’)-& between these levels. Allowing for 
the velocity changes in both the plume and the cap, the ratio of the velocity of 
the centre to that on the axis of the established plume at  this level is 

0.61 x (1 +a’)-* = 0.61 x (1-18)-* = 0.49. 

If the cap is flattened the value is slightly greater than this, and if elongated, 
slightly less. The corresponding ratio between the velocity of the base of the cap 
and the central plume velocity there is c1 = 0.38. 

The films of the advance of the front were also used to investigate directly 
the power-law dependence of the position of the front on the time. For a plume, 
z cc ts from (4), and for a thermal released from rest, z cc t4 .  It is also relevant to 
recall that u cc z-l and therefore z cc t* for a jet (of zero buoyancy) in a uniform 
fluid. If the front of a starting plume behaves like the plume behindit, this should 
be distinguishable by direct measurements. 

The origin of z was found by extrapolating the measured radii back to zero, 
and the origin of t adjusted until the best straight line was obtained on a log- 
log plot. The slope of this line was taken as the required exponent. The mean slope 
for the 16 experiments analysed in this way was 0.72 & 0-06. This of course is 
not a very precise method of analysis, but it seems adequate to show that the 
velocity of the front of a starting plume behaves like that of the plume behind it, 
rather than that of a thermal. 

In  this connexion it is of interest to refer to some observations in the atmo- 
sphere which can be regarded as a large-scale test of the above ideas. At  the 
beginning of certain volcanic eruptions a plume of smoke is ejected, and the 
cauliflower-like top of this has been photographed at successive times. In a 
recent review article, Sakuma & Nagata (1957) analyse the results of such 
measurements and find the power-law dependence is about z cc to6. This is not 
consistent either with a neutral jet or with a thermal of constant buoyancy, but 
can be explained if one assumes that the behaviour of the front is somewhere 
between that of a jet and a plume. That is, thevelocities may be initially so 
great that buoyancy can be neglected but later this becomes increasingly im- 
portant. No detailed results have been found from which the other quantities 
available in the laboratory experiments could be obtained for the atmospheric 
case. 

6. The fraction of entrained fluid entering from below 
We have obtained the result that the angle of spread is less for a buoyant ele- 

ment maintained from below than it is for a thermal released from rest. This 
implies that the proportional rate of mixing per unit height E is also smaller, 
since by definition E = V-ldV‘/dz = 3a’/a, 
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where V is the volume of the element, supposed spherical, and a is its radius. 
The difference is even greater than it appears when we think only of the rate of 
spread, since for a thermal all the fluid entrained comes directly from the environ- 
ment, whereas at the front of the starting plume some environmental fluid is 
entrained directly but a considerable fraction comes from the plume below. 
The experimental results can now be used to calculate the fraction coming from 
the two sources. 

The calculation will be carried out assuming that the cap is spherical; the 
qualitative changes to be made for other shapes will be mentioned. First of all 
i t  should be noted that the experimental values of R/b  = 1-2 and c1 = 0.38 
correspond (equation (16)) to c( 1 - a') = 0.1 1 or c = 0-14. This is very close indeed 
to the thermal value, much closer in fact that we could reasonably have expected 
in view of the uncertainties in the model and the sensitivity of c to R/b and cl. 

The volume V of the cap may be written as V = qR3, where R is the 'mean 
radius' and q is a geometrical constant which is 16.6 for a spherical vortex and 
about 13 for a flattened thermal. The rate of change of V may therefore be ex- 
pressed in the form 

dR dz, 
- = 3qR2- - dV 
dt dz, at 

= 3q (+")3D3z;c1u, (17) 

using (1 1) and (15). The rate of volume flow d V,/& from below may be evaluated 
by integrating across the Gaussian profiles (as was done to  obtain equations (8) 
and (10)) and it follows that 

dV,/dt = nb2( 1 - pc,, u 

= 7r(+a)2zE(l -PC1)U. 

Comparing (17) and (18), and substituting for D from (16) we have 

dV, - 16n  c; 
dV 9 q (c1++)C(l-a') .  

Substituting the values appropriate to a spherical cap in (19), namely q = 16.6, 
c1 = 0.38, c = 0.14, a' = 0.18, we obtain dq /dV  = 0-49; that is, about half the 
fluid entering the spherical cap at  any instant comes from below. 

It is clear that the density difference between the cap and its surroundings 
will fall off less rapidly with distance than it does in a thermal, and in fact this 
property too will follow the plume equations (14). The mean density difference 
will be a constant fraction of that in the plume immediately below the cap; using 
an argument similar to that above it can in fact be shown that for a spherical cap 
the value is about 0.5 A@). 

7. The two-dimensional case 
A two-dimensional starting plume can be investigated in the same way, though 

the details will not be discussed here. Again it is possible to obtain a similarity 
solution, with the front advancing at a constant fraction of the plume velocity 
(which is independent of distance in this case). 
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A modification of this theory might also be applied to the ‘nose’ at  the front 
of a layer of heavy fluid flowing down a sloping bed at high Reynolds numbers. 
It is to be expected that the ratio of the front to layer velocities, and also the shape 
of the nose, will depend on the slope and to a lesser extent on wall friction, in a 
way which would have to be determined experimentally in each case. 

8. Application to the atmosphere 
It has been shown how a theoretical description of the front of a ‘starting 

plume’ may be obtained, which is consistent both with the plume equations 
and with those describing a thermal-like element of increasing buoyancy. The 
laboratory experiments have given numerical values of two constants appearing 
in the theory, and we shall now summarize the results obtained and point out 
their implications in the context of cloud physics in which we wish to apply 
them. 

( 1 )  The centre of the cap moves at about half the maximum velocity in the 
plume behind it, and the velocity of the cap follows the power law appropriate 
to the plume rather than to a thermal of constant buoyancy. 

(2) The half angle of spread of the visible edge of the cap is a’ = 0.18, which is 
much less than that for a thermal. This result implies that the proportional rate 
of mixing into the cap per unit height, which is proportional to a‘, is just over 
half that for a thermal of constant buoyancy. 

(3) About half the fluid added to the cap comes from the plume, rather than 
directly from the environment. This implies a further decrease in the effective 
rate of dilution of fluid in the cap, and the density difference will in fact have the 
same dependence on distance as it does in a plume. 

We have suggested that these results might be used to investigate the effects 
of mixing from above and below on the properties of small clouds, and they are 
certainly directly applicable to the dry convection plume below cloud base. 
For such a plume we could determine the distribution with height of moisture as 
well as temperature, in the way that Morton (1957) has done for steady plumes 
in an atmosphere with a known moisture distribution. Clearly the equations of 
conservation of water vapour can be used, with the numerical values provided 
by the experiments reported here, to carry out similar calculations for the front 
of a starting plume and to work out where condensation will occur. 

No detailed calculations of this kind will be attempted here. It should be 
remarked that results based on point sources at the ground are of limited 
value in predicting the height of cloudbase, since they imply far too high a 
temperature at any level. In  practice, convection will begin when air near the 
ground is heated at a slow rate over a large area, and the condensation level will 
be raised, because of mixing, only a little above the height predicted by supposing 
that air is lifted from the ground without mixing. In  this respect the starting 
plume will be little different from the stea,dy plume. 

The starting plume model does, however, allow us to make an estimate of a 
quantity which has not previously been considered, namely, the time for which 
a steady source of heat must operate to produce a cloud at  a known level. We 
shall conclude with a simple numerical example to illustrate the method. 
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Suppose that the condensation level is at  lgkm above the ground and 
that the front of the plume responsible for the formation of a cloud is 1 km 
diameter a t  that level. Extrapolating downwards we can say that the starting 
plume has arisen from an area 460 m in diameter, or from a virtual source 
1.3 km below the ground. If the heating over this area of ground is at  the rate of 
0.2 cal/cm2 min, say, it can be shown that Q (defined by equation (3)) is about 
5 x 1O1O c.g.s. units. Applying equation (13), with appropriate changes for 
the finite source, we find that the centre of the ‘cap’ of the starting plume will 
reach 14 kmin 690 sec = 114 min, and its mean upward velocity is therefore about 
2 mjsec. 

I am grateful to Mr K. J. Heffernan for the cloud photograph reproduced in 
figure 1, and to Dr T. H. Ellison, Dr B. R. Morton and Mr I. R. Wood for several 
helpful discussions. 
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FIGLJILE 1.  Photograph of a cloud which has formed on top of a smoke plume 
produced by a grass fire. 

TURNER (Facing p .  368) 
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FIGURE 2.  Successive pictiires taken 1 sec apart of' a starting plume in a laboratory 
tank. The plume f ln id  consisted of dyed salt solution moving downwards through fresh 
water, but these photographs and figurc 3 are printed inverted for easier comparison with 
figure 1. 
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FIGLJIUC 3 .  Sttirting plume in which thc supply of' dye has been niornentarily interrriptetl 
to shom the front, nhich looks very like a thermal, and the stcady plumc behind. 
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